1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
| ''' A linear regression learning algorithm example using TensorFlow library.
Author: Aymeric Damien Project: https://github.com/aymericdamien/TensorFlow-Examples/ ''' #%% from __future__ import print_function
import tensorflow as tf import numpy import matplotlib.pyplot as plt rng = numpy.random
# Parameters learning_rate = 0.02 training_epochs = 1500 display_step = 100
# Training Data # asarray:转换为ndarray对象 train_X = numpy.asarray([3.3,4.4,5.5,6.71,6.93,4.168,9.779,6.182,7.59,2.167, 7.042,10.791,5.313,7.997,5.654,9.27,3.1]) train_Y = numpy.asarray([1.7,2.76,2.09,3.19,1.694,1.573,3.366,2.596,2.53,1.221, 2.827,3.465,1.65,2.904,2.42,2.94,1.3]) n_samples = train_X.shape[0]
# tf Graph Input # 声明float32类型,未定义形状(shape) X = tf.placeholder("float") Y = tf.placeholder("float") #print(X)
# Set model weights # 创建变量W和b,作为线性方程的参数,并初始化为float随机数 W = tf.Variable(rng.randn(), name="weight", trainable=True) b = tf.Variable(rng.randn(), name="bias")
# Construct a linear model # 线性模型 pred = WX + b pred = tf.add(tf.multiply(X, W), b)
# Mean squared error # 均方误差 cost = E(pred - Y)^2 表示梯度下降中的代价函数,值越小表示越拟合数据 # 1/2系数使得平方求梯度后常数系数为1,方便计算,系数对结果不影响 cost = tf.reduce_sum(tf.pow(pred-Y, 2))/(2*n_samples)
# Gradient descent # Note, minimize() knows to modify W and b because Variable objects are trainable=True by default # 使用梯度下降算法模型优化器。minimize(cost)包括compute_gradients(cost)和apply_gradients()。 # compute_gradients(cost)计算cost的梯度,默认使用GraphKeys.TRAINABLE_VARIABLES,所以包括了变量W和b # apply_gradients()应用梯度到变量列表,变量W和b为trainable,在这一步更新变量W和b的值 optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
# Initialize the variables (i.e. assign their default value) # 初始化变量的操作 init = tf.global_variables_initializer()
# Start training with tf.Session() as sess:
# Run the initializer # 初始化,初始化变量 sess.run(init)
# Fit all training data for epoch in range(training_epochs): #训练次数 for (x, y) in zip(train_X, train_Y): #将X,Y打包成(xi,yi)对的形式 sess.run(optimizer, feed_dict={X: x, Y: y}) #将每组(xi,yi)代入优化器计算
# 用下面这句替代上面一层循环,得到接近的结果,但速度明显提升,为什么不这样用,存疑。 # sess.run(optimizer, feed_dict={X: train_X, Y:train_Y})
# Display logs per epoch step # 每display_step次输出状态 if (epoch+1) % display_step == 0: c = sess.run(cost, feed_dict={X: train_X, Y:train_Y}) print("Epoch:", '%04d' % (epoch+1), "cost=", "{:.9f}".format(c), \ "W=", sess.run(W), "b=", sess.run(b))
print("Optimization Finished!") training_cost = sess.run(cost, feed_dict={X: train_X, Y: train_Y}) print("Training cost=", training_cost, "W=", sess.run(W), "b=", sess.run(b), '\n')
# Graphic display # 图形化等 plt.plot(train_X, train_Y, 'ro', label='Original data') plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line') plt.legend() plt.show()
# Testing example, as requested (Issue #2) test_X = numpy.asarray([6.83, 4.668, 8.9, 7.91, 5.7, 8.7, 3.1, 2.1]) test_Y = numpy.asarray([1.84, 2.273, 3.2, 2.831, 2.92, 3.24, 1.35, 1.03])
print("Testing... (Mean square loss Comparison)") testing_cost = sess.run( tf.reduce_sum(tf.pow(pred - Y, 2)) / (2 * test_X.shape[0]), feed_dict={X: test_X, Y: test_Y}) # same function as cost above print("Testing cost=", testing_cost) print("Absolute mean square loss difference:", abs( training_cost - testing_cost))
plt.plot(test_X, test_Y, 'bo', label='Testing data') plt.plot(train_X, sess.run(W) * train_X + sess.run(b), label='Fitted line') plt.legend() plt.show()
|